CSCI-564 CONSTRAINT PROCESSING AND HEURISTIC SEARCH

LECTURE 22 - CONSISTENCY

Dr. Jean-Alexis Delamer

Recap

- Constraint inference:
- New constraints can be inferred from an initial set of constraints.
- The new constraints might:
- Create constraints between variables that were not initially constrained.
- Tighten existing constraints.
- We can approximate a relation with a binary projection network.

Arc-Consistency

- Minimal network has the following local consistency property:
- Any value in the domain of a single variable can be extended consistently by any other variable.
- This property is called arc-consistency.

Basic Consistency

- We generally consider two types of consistency.
- Given variables i, j, k with values x, y, z, the predicate $P_{i j k}(x, y, z)$ is true iff the 3-tuple $(x, y, z) \in R_{i j k}$
- Node consistency: checking $P_{i}(x)$
- Arc consistency: checking $P_{i j}(x, y)$

Basic consistency

Consider:

- Two variables x and y
- whose domains are $D_{x}=$ $D_{y}=\{1,2,3\}$.
- And a constraint $R_{x y}=x<y$

Arcs connect consistent pairs of values

The variables are now arc-consistent

Arc-Consistency

- Definition Arc-consistency:
- Given a constraint network $\rho=(X, D, C)$, with $R_{i j} \in C$, a variable x_{i} is arc-consistent relative to x_{j} iff for every value $a_{i} \in D_{i}$ there exists a value $a_{j} \in D_{j}$ such that $\left(a_{i}, a_{j}\right) \in R_{i j}$.
- The constraint $R_{i j}$ is arc consistent iff x_{i} is arc-consistent relative to x_{j} and x_{j} is arcconsistent relative to x_{i}.
- A network of constraints is called arc-consistent iff all of its arcs are arc-consistent

Revise

- A first algorithm for arc-consistency.

```
REVISE(( }\mp@subsup{x}{i}{}),\mp@subsup{x}{j}{}
Input: a subnetwork defined by two variables }X={\mp@subsup{x}{i}{},\mp@subsup{x}{j}{}}, 
    distinguished variable }\mp@subsup{x}{i}{},\mathrm{ domains }\mp@subsup{D}{i}{}\mathrm{ and }\mp@subsup{D}{j}{}, an
    constraint R R 
Output: D}\mp@subsup{D}{i}{}\mathrm{ such that }\mp@subsup{x}{i}{}\mathrm{ is arc-consistent relative to }\mp@subsup{x}{j}{}\mathrm{ .
For each }\mp@subsup{a}{i}{}\in\mp@subsup{D}{i}{
    If there is no }\mp@subsup{a}{j}{}\in\mp@subsup{D}{j}{}\mathrm{ such that ( }\mp@subsup{a}{i}{},\mp@subsup{a}{j}{})\in\mp@subsup{R}{ij}{
        Delete }\mp@subsup{a}{i}{}\mathrm{ from Di
    EndIf
EndFor
```


Revise

- What is the complexity of the revise procedure?
- Each value in D_{i} is compared, in the worst case, with each value in D_{j}.
- The complexity of Revise is $O\left(n^{2}\right)$, where n bounds the domain size.
- Revise can also be described using composition:
- $D_{i} \leftarrow D_{i} \cap \pi_{i}\left(R_{i j} \bowtie D_{j}\right)$
- Arc-consistency of a whole network is accomplished by applying Revise to all pairs of variables.

Revise

- Is applying Revise to all pair of variables enough?
- No, Revise may need to be applied more than once.

AC-1

- First algorithm for $\mathrm{AC}-1$:

```
AC-1 (\rho)
Input: a network of constraints }\rho=(X,D,C)
Output: \rho' which s the loosest arc-consistent network
equivalent to }
```

Repeat
For each $\left\{x_{i}, x_{j}\right\} \in \rho$
$\operatorname{REVISE}\left(\left(x_{i}\right), x_{j}\right)$
$\operatorname{REVISE}\left(\left(x_{j}\right), x_{i}\right)$
EndFor
Until no domain is changed

What is the complexity?

- $\quad e=$ number of arcs, k variables and n values (domain size).
- Arc consistency is $0\left(e k n^{3}\right)$

Example

AC-1

- AC-1 may discover inconsistency.

AC-3

- Considering the complexity of AC-1 it is necessary to improve the performance.
- No need to process all the constraints if only a few domains were reduced in the previous loop.
- AC-3:
- Creates a queue of constraints to be processed.
- Once a constraint has been processed remove the constraint from the queue.
- Place back the constraint only if the domain of the second variable is modified.

AC-3

```
AC-3(\rho)
Input: a network of constraints }\rho=(X,D,C)
Output: }\mp@subsup{\rho}{}{\prime}\mathrm{ which s the loosest arc-consistent network
equivalent to \rho
For each pair {\mp@subsup{x}{i}{},\mp@subsup{x}{j}{}}\mathrm{ that participates in a constraint }\mp@subsup{R}{ij}{}\in\rho
    queue\leftarrowqueueU{(\mp@subsup{x}{i}{},\mp@subsup{x}{j}{}),(\mp@subsup{x}{j}{},\mp@subsup{x}{i}{})}
EndFor
While queue\not= \emptyset
    select and delete ( }\mp@subsup{x}{i}{},\mp@subsup{x}{j}{}\mathrm{ ) from queue
    REVISE(( }\mp@subsup{x}{i}{}),\mp@subsup{x}{j}{}
    If REVISE(( }\mp@subsup{x}{i}{}),\mp@subsup{x}{j}{})\mathrm{ causes a change in Di
    queue\leftarrowqueueU {( }\mp@subsup{x}{k}{},\mp@subsup{x}{i}{}),k\not=i,k\not=j
    EndIf
EndWhile
```


Example

$$
\begin{aligned}
& D_{x_{1}}=\{1,2,3,4,5\} \\
& D_{x_{2}}=\{1,2,3,4,5\} \\
& D_{x_{3}}=\{1,2,3,4,5\} \\
& D_{x_{4}}=\{1,2,3,4,5\} \\
& R_{23}=\{(2,2),(4,5),(2,5),(3,5),(2,3),(5,1),(1,2),(5,3),(2,1),(1,1)\} \\
& R_{13}=\{(5,5),(2,4),(3,5),(3,3),(5,3),(4,4),(5,4),(3,4),(1,1),(3,1)\} \\
& R_{24}=\{(1,2),(3,2),(3,1),(4,5),(2,3),(4,1),(1,1),(4,3),(2,2),(1,5)\}
\end{aligned}
$$

Queue $=\left\{R_{24}, R_{42}, R_{13}, R_{23}, R_{31}, R_{32}\right\}$

Example

$$
\begin{array}{rlr}
D_{x_{1}} & =\{1,2,3,4,5\} & \text { We modified } x_{2} \text {, so we need to add the } \\
D_{x_{2}} & =\{1,2,3,4,5\} & \text { other constraint with } x_{2} \text { in the queue. } \\
D_{x_{3}} & =\{1,2,3,4,5\} & \\
D_{x_{4}} & =\{1,2,3,4,5\} & \\
R_{23} & =\{(2,2),(4,5),(2,5),(3,5),(2,3),(5,1),(1,2),(5,3),(2,1),(1,1)\} \\
R_{13} & =\{(5,5),(2,4),(3,5),(3,3),(5,3),(4,4),(5,4),(3,4),(1,1),(3,1)\} \\
R_{24} & =\{(1,2),(3,2),(3,1),(4,5),(2,3),(4,1),(1,1),(4,3),(2,2),(1,5)\}
\end{array}
$$

Queue $=\left\{R_{42}, R_{13}, R_{23}, R_{31}, R_{32}\right\}$
$\operatorname{Revise}\left(x_{2}, x_{4}\right) \quad D_{x_{2}} \leftarrow D_{x_{2}} \backslash\{5\}=\{1,2,3,4\}$

Example

$$
\begin{array}{rlrl}
D_{x_{1}} & =\{1,2,3,4,5\} & \text { We modified } x \\
D_{x_{2}} & =\{1,2,3,4\} & \text { other constrair } \\
D_{x_{3}} & =\{1,2,3,4,5\} & \\
D_{x_{4}} & =\{1,2,3,4,5\} & \\
R_{23} & =\{(2,2),(4,5),(2,5),(3,5),(2,3),(5,1),(1,2),(5,3),(2,1),(1,1)\} \\
R_{13} & =\{(5,5),(2,4),(3,5),(3,3),(5,3),(4,4),(5,4),(3,4),(1,1),(3,1)\} \\
R_{24} & =\{(1,2),(3,2),(3,1),(4,5),(2,3),(4,1),(1,1),(4,3),(2,2),(1,5)\}
\end{array}
$$

Queue $=\left\{R_{13}, R_{23}, R_{31}, R_{32}\right\}$
$\operatorname{Revise}\left(x_{4}, x_{2}\right) \quad D_{x_{4}} \leftarrow D_{x_{4}} \backslash\{4\}=\{1,2,3,5\}$

Example

$$
\begin{aligned}
& D_{x_{1}}=\{1,2,3,4,5\} \\
& D_{x_{2}}=\{1,2,3,4\} \\
& D_{x_{3}}=\{1,2,3,4,5\} \\
& D_{x_{4}}=\{1,2,3,5\} \\
& R_{23}=\{(2,2),(4,5),(2,5),(3,5),(2,3),(5,1),(1,2),(5,3),(2,1),(1,1)\} \\
& R_{13}=\{(5,5),(2,4),(3,5),(3,3),(5,3),(4,4),(5,4),(3,4),(1,1),(3,1)\} \\
& R_{24}=\{(1,2),(3,2),(3,1),(4,5),(2,3),(4,1),(1,1),(4,3),(2,2),(1,5)\}
\end{aligned}
$$

Queue $=\left\{R_{23}, R_{31}, R_{32}\right\}$
$\operatorname{Revise}\left(x_{1}, x_{3}\right) \quad D_{x_{1}} \leftarrow D_{x_{1}}=\{1,2,3,4,5\}$

Example

$$
\begin{aligned}
& D_{x_{1}}=\{1,2,3,4,5\} \\
& D_{x_{2}}=\{1,2,3,4\} \\
& D_{x_{3}}=\{1,2,3,4,5\} \\
& D_{x_{4}}=\{1,2,3,5\} \\
& R_{23}=\{(2,2),(4,5),(2,5),(3,5),(2,3),(5,1),(1,2),(5,3),(2,1),(1,1)\} \\
& R_{13}=\{(5,5),(2,4),(3,5),(3,3),(5,3),(4,4),(5,4),(3,4),(1,1),(3,1)\} \\
& R_{24}=\{(1,2),(3,2),(3,1),(4,5),(2,3),(4,1),(1,1),(4,3),(2,2),(1,5)\}
\end{aligned}
$$

Queue $=\left\{R_{31}, R_{32}\right\}$
$\operatorname{Revise}\left(x_{2}, x_{3}\right) \quad D_{x_{2}} \leftarrow D_{x_{2}}=\{1,2,3,4\}$

Example

$$
\begin{array}{rlrl}
D_{x_{1}} & =\{1,2,3,4,5\} & \text { We modified } x \\
D_{x_{2}} & =\{1,2,3,4\} & \text { other constrail } \\
D_{x_{3}} & =\{1,2,3,4,5\} & \\
D_{x_{4}} & =\{1,2,3,5\} & \\
R_{23}=\{(2,2),(4,5),(2,5),(3,5),(2,3),(5,1),(1,2),(5,3),(2,1),(1,1)\} \\
R_{13} & =\{(5,5),(2,4),(3,5),(3,3),(5,3),(4,4),(5,4),(3,4),(1,1),(3,1)\} \\
R_{24} & =\{(1,2),(3,2),(3,1),(4,5),(2,3),(4,1),(1,1),(4,3),(2,2),(1,5)\}
\end{array}
$$

Example

$$
\begin{aligned}
& D_{x_{1}}=\{1,2,3,4,5\} \\
& D_{x_{2}}=\{1,2,3,4\} \\
& D_{x_{3}}=\{1,3,4,5\} \\
& D_{x_{4}}=\{1,2,3,5\} \\
& R_{23}=\{(2,2),(4,5),(2,5),(3,5),(2,3),(5,1),(1,2),(5,3),(2,1),(1,1)\} \\
& R_{13}=\{(5,5),(2,4),(3,5),(3,3),(5,3),(4,4),(5,4),(3,4),(1,1),(3,1)\} \\
& R_{24}=\{(1,2),(3,2),(3,1),(4,5),(2,3),(4,1),(1,1),(4,3),(2,2),(1,5)\}
\end{aligned}
$$

Queue $=\left\{R_{32}\right\}$
$\operatorname{Revise}\left(x_{2}, x_{3}\right) \quad D_{x_{2}} \leftarrow D_{x_{2}}$

Example

$$
\begin{array}{rlr}
D_{x_{1}} & =\{1,2,3,4,5\} & \text { We modified } x_{3} \text {, so we need to add the } \\
D_{x_{2}} & =\{1,2,3,4\} & \text { other constraint with } 3 \text { in the queue. } \\
D_{x_{3}} & =\{1,3,4,5\} & \\
D_{x_{4}} & =\{1,2,3,5\} & \\
R_{23} & =\{(2,2),(4,5),(2,5),(3,5),(2,3),(5,1),(1,2),(5,3),(2,1),(1,1)\} \\
R_{13} & =\{(5,5),(2,4),(3,5),(3,3),(5,3),(4,4),(5,4),(3,4),(1,1),(3,1)\} \\
R_{24} & =\{(1,2),(3,2),(3,1),(4,5),(2,3),(4,1),(1,1),(4,3),(2,2),(1,5)\}
\end{array}
$$

Queue $=\{ \}$	R_{13}
Revise $\left(x_{3}, x_{2}\right)$	$D_{x_{3}} \leftarrow D_{x_{3}} \backslash\{4\}=\{1,3,5\}$

$\operatorname{Revise}\left(x_{3}, x_{2}\right) \quad D_{x_{3}} \leftarrow D_{x_{3}} \backslash\{4\}=\{1,3,5\}$

Example

$$
\begin{array}{rlrl}
D_{x_{1}} & =\{1,2,3,4,5\} & \text { We modified } x_{1} \text {, so we need to add the } \\
D_{x_{2}} & =\{1,2,3,4\} & \text { other constraint with } x_{1} \text { in the queue. } \\
D_{x_{3}} & =\{1,3,5\} & \\
D_{x_{4}} & =\{1,2,3,5\} & \\
R_{23} & =\{(2,2),(4,5),(2,5),(3,5),(2,3),(5,1),(1,2),(5,3),(2,1),(1,1)\} \\
R_{13} & =\{(5,5),(2,4),(3,5),(3,3),(5,3),(4,4),(5,4),(3,4),(1,1),(3,1)\} \\
R_{24} & =\{(1,2),(3,2),(3,1),(4,5),(2,3),(4,1),(1,1),(4,3),(2,2),(1,5)\}
\end{array}
$$

Queue $=\{ \}$
$\operatorname{Revise}\left(x_{1}, x_{3}\right) \quad D_{x_{1}} \leftarrow D_{x_{1}} \backslash\{2,4\}=\{1,3,5\}$

Example

$$
\begin{aligned}
& D_{x_{1}}=\{1,3,5\} \\
& D_{x_{2}}=\{1,2,3,4\} \\
& D_{x_{3}}=\{1,3,5\} \\
& D_{x_{4}}=\{1,2,3,5\} \\
& R_{23}=\{(2,2),(4,5),(2,5),(3,5),(2,3),(5,1),(1,2),(5,3),(2,1),(1,1)\} \\
& R_{13}=\{(5,5),(2,4),(3,5),(3,3),(5,3),(4,4),(5,4),(3,4),(1,1),(3,1)\} \\
& R_{24}=\{(1,2),(3,2),(3,1),(4,5),(2,3),(4,1),(1,1),(4,3),(2,2),(1,5)\}
\end{aligned}
$$

Queue $=\{ \}$

Queue empty, it's the end.

AC-3

- The complexity of AC-3 is $O\left(e n^{3}\right)$.
- Each constraint are processed at most $2 n$ times where n bounds the domain size.
- Why?
- Each time it is reintroduced into the queue, the domain of a variable has been reduced by at least 1.
- There are at most $2 n$ values.
- There are e binary constraints.
- Processing each one takes $O\left(n^{2}\right)$.

AC-3

- Is the AC-3 optimal?
- It seems hat no algorithm can do better than $\mathrm{O}\left(e n^{2}\right)$.
- The worst-case of just verifying arc-consistency requires en ${ }^{2}$ operations.
- No, AC-3 is not optimal.
- An update as been proposed: AC-4
- AC-4 is optimal.
- It does not use Revise or the composition operator.

AC-4

- What are the differences?
- It associates each value a_{i} in the domain of x_{i} with the number of support from variable x_{j}.
- Number of values in x_{j} that are consistent with a_{i}.
- A value a_{i} is removed from D_{i} if it has no support.
- It maintains:
- A list of unsupported variable-value pairs.
- A counter array of supports for a_{i} from x_{j}.
- An array $S_{\left(x_{j}, a_{j}\right)}$ that points to all values in other variables supported by $\left(x_{j}, a_{j}\right)$

```
AC-4
AC-4 ( \(\rho\) )
Input: a network of constraints \(\rho=(X, D, C)\).
Output: \(\rho^{\prime}\) which \(s\) the loosest arc-consistent network equivalent to \(\rho\)
\(M \leftarrow \emptyset\)
List \(\leftarrow \emptyset\)
Initialize \(S_{\left(x_{i}, c_{i}\right)}\), counter \(\left(i, a_{i}, j\right)\) for all \(R_{i j}\)
ForEach counters
    If counter \(\left(x_{i}, a_{i}, x_{j}\right)=0\)
        List \(\leftarrow\left(x_{i}, a_{i}\right)\)
    EndIf
EndFor
While List is not empty
    choose \(\left(x_{i}, a_{i}\right)\) from List, remove it and add it to \(M\)
    ForEach \(\left(x_{j}, a_{j}\right)\) in \(S_{\left(x_{i}, a_{i}\right)}\)
        decrement counter \(\left(x_{j}, a_{j}, x_{i}\right)\)
        If counter \(\left(x_{j}, a_{j}, x_{i}\right)=0\)
            List \(\leftarrow\left(x_{j}, a_{j}\right)\)
        EndIf
    EndFor

\section*{Example}
- \(S_{(z, 2)}=\{(x, 2),(y, 2),(y, 4)\}, S_{(z, 5)}=\{(x, 5)\}, S_{(x, 2)}=\{(z, 2)\}, S_{(x, 5)}=\{(z, 5)\}, S_{(y, 2)}=\) \(\{(z, 2)\}, S_{(y, 4)}=\{(z, 2)\}\)
- \(\operatorname{counter}(x, 2, z)=1, \operatorname{counter}(x, 5, z)=1\), counter \((z, 2, x)=1, \operatorname{counter}(z, 5, x)=\) \(1, \operatorname{counter}(z, 2, y)=1, \operatorname{counter}(z, 5, y)=0, \operatorname{counter}(y, 2, z)=1, \operatorname{counter}(y, 4, z)=1\)
- List \(=\{(z, 5)\}\)
- \(M=\varnothing\)


\section*{Example}
- \(S_{(z, 2)}=\{(x, 2),(y, 2),(y, 4)\}, S_{(z, 5)}=\{(x, 5)\}, S_{(x, 2)}=\{(z, 2)\}, S_{(x, 5)}=\{(z, 5)\}, S_{(y, 2)}=\) \(\{(z, 2)\}, S_{(y, 4)}=\{(z, 2)\}\)
- \(\operatorname{counter}(x, 2, z)=1, \operatorname{counter}(x, 5, z)=0\), counter \((z, 2, x)=1, \operatorname{counter}(z, 5, x)=\) \(1, \operatorname{counter}(z, 2, y)=1\), counter \((z, 5, y)=0, \operatorname{counter}(y, 2, z)=1, \operatorname{counter}(y, 4, z)=1\)
- List \(=\{ \}\)
- \(M=\{(z, 5)\}\)


\section*{Example}
- \(S_{(z, 2)}=\{(x, 2),(y, 2),(y, 4)\}, S_{(z, 5)}=\{(x, 5)\}, S_{(x, 2)}=\{(z, 2)\}, S_{(x, 5)}=\{(z, 5)\}, S_{(y, 2)}=\) \(\{(z, 2)\}, S_{(y, 4)}=\{(z, 2)\}\)
- \(\operatorname{counter}(x, 2, z)=1, \operatorname{counter}(x, 5, z)=0\), counter \((z, 2, x)=1, \operatorname{counter}(z, 5, x)=\) \(1, \operatorname{counter}(z, 2, y)=1, \operatorname{counter}(z, 5, y)=0, \operatorname{counter}(y, 2, z)=1, \operatorname{counter}(y, 4, z)=1\)
- List \(=\{ \}\)
- \(M=\{(z, 5),(x, 5)\}\)


\section*{Arc-consistency Algorithms}
- AC-1: brute-force \(O\left(\right.\) ken \(\left.^{3}\right)\)
- AC-3: queue-based \(O\left(e n^{3}\right)\)
- AC-4: context-based, optimal \(O\left(e n^{2}\right)\)
- AC-5,6,7,... Good in special cases

\section*{Constraint checking}
- Can be used to propagate the constraints.


\section*{Is Arc-consistency enough?}
- Example: a triangle graph-coloring with 2 values.
- Is it arc-consistent?
- Is it consistent?

Yes
- It is not path, or 3-consistent. No
```

